Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

1-Chloromethyl-1,4-diazoniabicyclo-[2.2.2]octane tetrachloridocuprate(II)

Tao Rong

Ordered Matter Science Research Center, Southeast University, Nanjing 210096, People's Republic of China

Correspondence e-mail: rongtao198806@163.com

Received 26 April 2011; accepted 30 May 2011

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.022; wR factor = 0.055; data-to-parameter ratio = 22.6.

In the crystal structure of the title compound, $(C_7H_{15}ClN_2)$ -[CuCl₄], a weak intermolecular $N-H\cdots$ Cl hydrogen bond is observed between the organic dication and the tetrahedral $[CuCl_4]^{2-}$ anion. The organic dication is distorted, as indicated by the N-C-C-N torsion angles, which range from 16.76 (4) to 19.54 (3)°.

Related literature

For related 1,4-diazabicyclo[2.2.2]octane tetrachloridocuprate(II) and tetrachloridocobaltate(II) structures, and related references therein, see: Sun & Qu (2005); Qu & Sun (2005). For phase transitions of ferroelectric materials, see: Zhang et al. (2008); Ye et al. (2009).

a = 9.878 (4) Å

b = 11.167 (4) Å

c = 12.201 (4) Å

Experimental

Crystal data	
$(C_7H_{15}ClN_2)[CuCl_4]$ M = 368.00	
Orthorhombic, $P2_12_12_1$	

V =	1345.9 (8) Å ³
<i>Z</i> =	4
Mo	$K\alpha$ radiation

Data collection

Rigaku Mercury2 diffractometer Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) $T_{\rm min}=0.465,\;T_{\rm max}=0.596$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.022$ $wR(F^2) = 0.055$ S = 1.013072 reflections 136 parameters H-atom parameters constrained

Table 1

Selected bond lengths (Å).

Cl2—Cu1	2.2537 (8)	Cl4—Cu1	2.2559 (9)
Cl3—Cu1	2.2539 (9)	Cl5—Cu1	2.2088 (11)

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	<i>D</i> -H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$N2 - H2C \cdots Cl2$ $N2 - H2C \cdots Cl3$	0.91	2.60	3.270 (2)	131
	0.91	2.54	3.252 (2)	136

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

The author is grateful to the Starter Fund of Southeast University, Nanjing, China.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2354).

References

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.

Qu, Y. & Sun, X.-M. (2005). Acta Cryst. E61, m2121-m2123.

Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Sun, X.-M. & Qu, Y. (2005). Acta Cryst. E61, m1360-m1362.

Ye, H.-Y., Fu, D.-W., Zhang, Y., Zhang, W., Xiong, R.-G. & Huang, S. D. (2009). J. Am. Chem. Soc. 131, 42-43.

Zhang, W., Xiong, R.-G. & Huang, S.-P. D. (2008). J. Am. Chem. Soc. 130, 10468-10469.

metal-organic compounds

 $\mu = 2.59 \text{ mm}^{-1}$ T = 203 K

 $R_{\rm int} = 0.032$

 $\Delta \rho_{\rm max} = 0.39 \ {\rm e} \ {\rm \AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.36 \text{ e } \text{\AA}^{-3}$

 $0.30 \times 0.25 \times 0.20$ mm

6091 measured reflections

3072 independent reflections

2865 reflections with $I > 2\sigma(I)$

Absolute structure: Flack (1983),

with 1298 Friedel pairs

Flack parameter: 0.006 (11)

supplementary materials

Acta Cryst. (2011). E67, m889 [doi:10.1107/S1600536811020782]

1-Chloromethyl-1,4-diazoniabicyclo[2.2.2]octane tetrachloridocuprate(II)

T. Rong

Comment

The title compound (I), (Fig. 1), consists of protonated 1-(chloridomethyl)-1,4-diazabicyclo[2.2.2]octane-1,4-diium dications and $[CuCl_4]^{2-}$ anions. The organic dication is distorted, as indicated by the N—C—C—N torsion angles, which range from 16.76 (4) to 19.54 (3)°. In the structure of 1,4-dimethyl-1,4-diazonia[2.2.2]octane tetrachloridocuprate(II), of two independent dications one is almost undistorted with torsion angles between 0.6 (6) and 0.9 (5)°, whereas the other dication is distorted exhibiting torsion angles in the range of 5.5 (5) and 7.9 (5)° (Sun & Qu, 2005). In the isotypic cobalt(II) structure (Qu & Sun, 2005), two independent dications are slightly distorted with torsion angles range between 3.0 (4) and 8.7 (4)°. The $[CuCl_4]^{2-}$ anion in (I) possesses typical Cu—Cl bonds and its lengths range from 2.209 (1) to 2.2559 (9) Å (Table 1), while the Cl—Cu—Cl angles range from 95.98 (4) to 132.85 (3)°. The bifurcated N—H…(Cl,Cl) hydrogen bonds (Table 2) between the organic dications and the $[CuCl_4]^{2-}$ anions contribute to the stability of crystal packing (Fig. 2).

The study of ferroelectric materials has received much attention. Some materials have predominantly dielectric-ferroelectric performance. The title compound was studied as part of our work to obtain potential ferroelectric phase transition materials. Unluckily, the compound has no dielectric anomalies in the temperature range 93–453 K, suggesting that it might be only a paraelectric (Zhang *et al.*, 2008; Ye *et al.*, 2009).

Experimental

1, 4-diazabicyclo [2.2.2]octane (5.6 g, 0.05 mol) was added in dichloromethane (20 ml) and the mixture was refluxed for 8 h. On standing for about 16 h at room temperature, the white precipitate of 1-(chloridomethyl)-1,4-diazabicyclo[2.2.2]octan-1-ium chloride was obtained.

The title compound was synthesized by adding a solution of 1-(chloridomethyl)-1,4-diazabicyclo[2.2.2]octan-1-ium chloride (1.97 g, 10 mmol) in HCl (37%, 20 ml) to a solution of $CuCl_2$ (8 mmol) in 20 ml H₂O. After a few weeks, brown hygroscopic block crystals of the title compound were obtained on slow evaporation of the solvent.

Refinement

Positional parameters of all H atoms bonded to C and N atoms were calculated geometrically and were allowed to ride on the C and N atoms to which they are bonded, with respective C—H and N—H distances of 0.97 Å and 0.91 Å and with $U_{iso}(H) = 1.2U_{eq}(C, N)$.

Figures

Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2. A view of a packing section of the title compound, stacking along the c axis. Dashed lines indicate hydrogen bonds.

1-Chloromethyl-1,4-diazoniabicyclo[2.2.2]octane tetrachloridocuprate(II)

Crystal data	
(C ₇ H ₁₅ ClN ₂)[CuCl ₄]	F(000) = 740
$M_r = 368.00$	$D_{\rm x} = 1.816 {\rm ~Mg~m}^{-3}$
Orthorhombic, $P2_12_12_1$	Mo K α radiation, $\lambda = 0.71073$ Å
Hall symbol: P 2ac 2ab	Cell parameters from 4288 reflections
a = 9.878 (4) Å	$\theta = 2.5 - 27.5^{\circ}$
b = 11.167 (4) Å	$\mu = 2.59 \text{ mm}^{-1}$
c = 12.201 (4) Å	<i>T</i> = 293 K
$V = 1345.9 (8) \text{ Å}^3$	Block, brown
Z = 4	$0.30 \times 0.25 \times 0.20 \text{ mm}$

Data collection

Rigaku Mercury2 diffractometer	3072 independent reflections
Radiation source: fine-focus sealed tube	2865 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.032$
Detector resolution: 28.5714 pixels mm ⁻¹	$\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 2.5^{\circ}$
CCD profile fitting scans	$h = -12 \rightarrow 12$
Absorption correction: multi-scan (<i>CrystalClear</i> ; Rigaku, 2005)	$k = -14 \rightarrow 14$
$T_{\min} = 0.465, \ T_{\max} = 0.596$	$l = -15 \rightarrow 15$
6091 measured reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites

 $R[F^2 > 2\sigma(F^2)] = 0.022$ H-atom parameters constrained $w = 1/[\sigma^2(F_0^2) + (0.0267P)^2]$ $wR(F^2) = 0.055$ where $P = (F_0^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\text{max}} = 0.001$ *S* = 1.01 $\Delta \rho_{\text{max}} = 0.39 \text{ e} \text{ Å}^{-3}$ 3072 reflections $\Delta \rho_{\rm min} = -0.36 \text{ e} \text{ Å}^{-3}$ 136 parameters Absolute structure: Flack (1983), with 1298 Friedel 0 restraints pairs Primary atom site location: structure-invariant direct Flack parameter: 0.006 (11) methods

Special details

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C1	0.4179 (3)	1.0325 (2)	0.3874 (2)	0.0310 (6)
H1A	0.4300	0.9982	0.3150	0.037*
H1B	0.3385	1.0836	0.3859	0.037*
C2	0.3989 (3)	0.9330 (2)	0.4717 (2)	0.0267 (6)
H2A	0.3256	0.9533	0.5212	0.032*
H2B	0.3760	0.8586	0.4350	0.032*
C3	0.6657 (3)	1.0334 (2)	0.4017 (2)	0.0303 (6)
H3A	0.7419	1.0735	0.4359	0.036*
H3B	0.6844	1.0253	0.3240	0.036*
C4	0.6448 (3)	0.9099 (2)	0.4533 (2)	0.0286 (6)
H4A	0.6235	0.8517	0.3968	0.034*
H4B	0.7269	0.8845	0.4902	0.034*
C5	0.5303 (3)	1.1391 (2)	0.5373 (2)	0.0288 (6)
H5A	0.4426	1.1748	0.5519	0.035*
H5B	0.5998	1.1973	0.5551	0.035*
C6	0.5486 (3)	1.0273 (2)	0.6064 (2)	0.0282 (6)
H6A	0.6388	1.0263	0.6380	0.034*
H6B	0.4834	1.0269	0.6659	0.034*
C7	0.5329 (3)	0.8043 (2)	0.6006 (2)	0.0336 (6)
H7A	0.6137	0.8040	0.6457	0.040*
H7B	0.5382	0.7367	0.5510	0.040*
Cl1	0.39073 (9)	0.78795 (7)	0.68465 (6)	0.0493 (2)
N1	0.5285 (2)	0.91796 (17)	0.53523 (16)	0.0212 (4)
N2	0.5402 (2)	1.10429 (17)	0.41845 (17)	0.0255 (4)
H2C	0.5438	1.1716	0.3765	0.031*
Cl2	0.36056 (6)	1.33367 (5)	0.33718 (6)	0.03068 (15)

supplementary materials

C13	0.69739 (6)	1.35292 (6)	0.36324 (6)	0.03568 (16)
Cl4	0.42453 (7)	1.63249 (5)	0.36275 (5)	0.03390 (16)
C15	0.55993 (8)	1.49699 (6)	0.59012 (6)	0.04221 (18)
Cu1	0.51283 (3)	1.45593 (3)	0.41718 (3)	0.02648 (9)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0292 (13)	0.0314 (14)	0.0325 (15)	-0.0047 (12)	-0.0084 (11)	0.0029 (11)
C2	0.0233 (13)	0.0228 (13)	0.0339 (14)	-0.0040 (10)	-0.0025 (11)	-0.0032 (11)
C3	0.0237 (12)	0.0379 (14)	0.0294 (14)	0.0008 (12)	0.0058 (11)	0.0033 (12)
C4	0.0255 (13)	0.0314 (13)	0.0289 (14)	0.0070 (12)	0.0048 (11)	0.0014 (11)
C5	0.0342 (15)	0.0215 (12)	0.0305 (13)	-0.0036 (12)	0.0031 (12)	-0.0053 (10)
C6	0.0338 (14)	0.0260 (13)	0.0248 (14)	-0.0091 (11)	0.0016 (10)	-0.0047 (10)
C7	0.0426 (16)	0.0270 (13)	0.0312 (15)	-0.0047 (12)	-0.0017 (13)	0.0070 (11)
Cl1	0.0659 (6)	0.0429 (4)	0.0392 (4)	-0.0177 (4)	0.0166 (4)	0.0024 (3)
N1	0.0226 (10)	0.0194 (9)	0.0217 (10)	-0.0025 (8)	-0.0004 (9)	-0.0012 (8)
N2	0.0260 (10)	0.0214 (10)	0.0292 (11)	-0.0023 (9)	-0.0003 (10)	0.0027 (9)
Cl2	0.0259 (3)	0.0249 (3)	0.0412 (4)	-0.0006 (3)	-0.0059 (3)	-0.0022 (3)
C13	0.0241 (3)	0.0314 (3)	0.0516 (4)	0.0000 (3)	-0.0010 (3)	-0.0042 (3)
Cl4	0.0505 (4)	0.0211 (3)	0.0302 (3)	0.0052 (3)	-0.0030 (3)	-0.0007 (3)
C15	0.0568 (5)	0.0438 (4)	0.0260 (3)	0.0048 (4)	-0.0066 (3)	-0.0006 (3)
Cu1	0.02908 (17)	0.02223 (14)	0.02814 (16)	0.00119 (14)	-0.00354 (14)	-0.00133 (13)

Geometric parameters (Å, °)

C1—N2	1.499 (3)	C5—C6	1.518 (3)
C1—C2	1.526 (3)	С5—Н5А	0.9700
C1—H1A	0.9700	С5—Н5В	0.9700
C1—H1B	0.9700	C6—N1	1.511 (3)
C2—N1	1.506 (3)	С6—Н6А	0.9700
C2—H2A	0.9700	С6—Н6В	0.9700
C2—H2B	0.9700	C7—N1	1.499 (3)
C3—N2	1.484 (3)	C7—Cl1	1.748 (3)
C3—C4	1.530 (3)	С7—Н7А	0.9700
С3—НЗА	0.9700	С7—Н7В	0.9700
С3—Н3В	0.9700	N2—H2C	0.9100
C4—N1	1.526 (3)	Cl2—Cu1	2.2537 (8)
C4—H4A	0.9700	Cl3—Cu1	2.2539 (9)
C4—H4B	0.9700	Cl4—Cu1	2.2559 (9)
C5—N2	1.504 (3)	Cl5—Cu1	2.2088 (11)
N2-C1-C2	108.56 (19)	N1—C6—C5	109.22 (19)
N2—C1—H1A	110.0	N1—C6—H6A	109.8
C2—C1—H1A	110.0	С5—С6—Н6А	109.8
N2—C1—H1B	110.0	N1—C6—H6B	109.8
C2—C1—H1B	110.0	С5—С6—Н6В	109.8
H1A—C1—H1B	108.4	H6A—C6—H6B	108.3
N1—C2—C1	108.86 (19)	N1—C7—C11	112.18 (19)

N1—C2—H2A	109.9	N1—C7—H7A	109.2
C1—C2—H2A	109.9	Cl1—C7—H7A	109.2
N1—C2—H2B	109.9	N1—C7—H7B	109.2
C1—C2—H2B	109.9	Cl1—C7—H7B	109.2
H2A—C2—H2B	108.3	H7A—C7—H7B	107.9
N2—C3—C4	108.13 (19)	C7—N1—C2	113.10 (19)
N2—C3—H3A	110.1	C7—N1—C6	111.95 (19)
С4—С3—НЗА	110.1	C2—N1—C6	108.52 (19)
N2—C3—H3B	110.1	C7—N1—C4	106.10 (19)
С4—С3—Н3В	110.1	C2—N1—C4	108.03 (19)
НЗА—СЗ—НЗВ	108.4	C6—N1—C4	108.98 (18)
N1—C4—C3	108.55 (19)	C3—N2—C1	110.7 (2)
N1—C4—H4A	110.0	C3—N2—C5	109.0 (2)
C3—C4—H4A	110.0	C1—N2—C5	109.21 (19)
N1—C4—H4B	110.0	C3—N2—H2C	109.3
C3—C4—H4B	110.0	C1—N2—H2C	109.3
H4A—C4—H4B	108.4	C5—N2—H2C	109.3
N2	108.37 (19)	Cl5—Cu1—Cl2	132.85 (3)
N2—C5—H5A	110.0	Cl5—Cu1—Cl3	102.39 (3)
С6—С5—Н5А	110.0	Cl2—Cu1—Cl3	95.98 (4)
N2—C5—H5B	110.0	Cl5—Cu1—Cl4	100.44 (3)
С6—С5—Н5В	110.0	Cl2—Cu1—Cl4	98.27 (4)
H5A—C5—H5B	108.4	Cl3—Cu1—Cl4	132.29 (3)
N2-C1-C2-N1	-16.8 (3)	C5—C6—N1—C4	68.1 (2)
N2-C3-C4-N1	-19.5 (3)	C3—C4—N1—C7	-167.6 (2)
N2-C5-C6-N1	-16.8 (3)	C3—C4—N1—C2	70.9 (2)
Cl1—C7—N1—C2	-52.6 (2)	C3—C4—N1—C6	-46.9 (3)
Cl1—C7—N1—C6	70.4 (2)	C4—C3—N2—C1	-47.8 (3)
Cl1—C7—N1—C4	-170.83 (17)	C4—C3—N2—C5	72.3 (2)
C1—C2—N1—C7	-166.0 (2)	C2-C1-N2-C3	69.9 (3)
C1—C2—N1—C6	69.1 (2)	C2-C1-N2-C5	-50.1 (3)
C1—C2—N1—C4	-48.9 (2)	C6—C5—N2—C3	-51.1 (3)
C5—C6—N1—C7	-174.9 (2)	C6—C5—N2—C1	70.0 (3)
C5—C6—N1—C2	-49.3 (2)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H…A	$D \cdots A$	$D\!\!-\!\!\mathrm{H}^{\ldots}\!\!\cdot\!\!\cdot$
N2—H2C···Cl2	0.91	2.60	3.270 (2)	131
N2—H2C···Cl3	0.91	2.54	3.252 (2)	136

